Reactive pathways in the chlorobenzene-ammonia dimer cation radical: new insights from experiment and theory.
نویسندگان
چکیده
Building upon our recent studies of noncovalent interactions in chlorobenzene and bromobenzene clusters, in this work we focus on interactions of chlorobenzene (PhCl) with a prototypical N atom donor, ammonia (NH3). Thus, we have obtained electronic spectra of PhCl···(NH3)n (n = 1-3) complexes in the region of the PhCl monomer S0 -S1 (ππ*) transition using resonant 2-photon ionization (R2PI) methods combined with time-of-flight mass analysis. Consistent with previous studies, we find that upon ionization the PhCl···NH3 dimer cation radical reacts primarily via Cl atom loss. A second channel, HCl loss, is identified for the first time in R2PI studies of the 1:1 complex, and a third channel, H atom loss, is identified for the first time. While prior studies have assumed the dominance of a π-type complex, we find that the reactive complex corresponds instead to an in-plane σ-type complex. This is supported by electronic structure calculations using density functional theory and post-Hartree-Fock methods and Franck-Condon analysis. The reactive pathways in this system were extensively characterized computationally, and consistent with results from previous calculations, we find two nearly isoenergetic arenium ions (Wheland intermediates; denoted WH1, WH2), which lie energetically below the initially formed dimer cation radical complex. At the energy of our experiment, intermediate WH1, produced from ipso-addition, is not stable with respect to Cl or HCl loss, and the relative branching between these channels observed in our experiment is well reproduced by microcanonical transition state theory calculations based upon the calculated parameters. Intermediate WH2, where NH3 adds ortho to the halogen, decomposes over a large barrier via H atom loss to form protonated o-chloroaniline. This channel is not open at the (2-photon) energy of our experiments, and it is suggested that photodissociation of a long-lived (i.e., several ns) WH2 intermediate leads to the observed products.
منابع مشابه
Ammonia-water cation and ammonia dimer cation.
We have investigated the structure, interaction energy, electronic properties, and IR spectra of the ammonia-water cation (NH(3)H(2)O)(+) using density functional theory (DFT) and high-level ab initio theory. The ammonia-water cation has three minimum-energy structures of (a) H(2)NH(+)...OH(2), (b) H(3)N(+)...OH(2), and (c) H(3)NH(+)...OH. The lowest-energy structure is (a), followed by (c) and...
متن کاملThe Hemibonded Dimer Radical Cation of Thiirane
Ab initio molecular orbital theory has been used to study the formation and reactions of the sulfursulfur hemibonded dimer radical cation of thiirane. Two fragmentation pathways, hemibond cleavage and ethylene extrusion, leading to the fragmentation of this species have been examined. The barriers to these processes are found to be similar and moderately large (127 and 160 kJ mol-', respectivel...
متن کاملPathways and Dynamics of Dissociation of Ionized ( H 20 ) 2
The energetics, geometrical and electronic structure, ionization processes, dynamics, and dissociation pathways of neutral and singly and doubly ionized water dimers are investigated with simulations employing the BomOppenheimer local-spin-density functional molecular dynamies (BO-LSD-MD) method. Vertical and adiabatic ionization potentials and dissociation energies and barriers are calculated ...
متن کاملDetermination of absolute photoionization cross sections of the phenyl radical.
Photoionization cross sections of the phenyl radical to form the phenyl cation were measured using tunable vacuum ultraviolet synchrotron radiation coupled with photofragment translational spectroscopy. The phenyl radical was produced via 193- or 248-nm dissociation of chlorobenzene. At 10.0 eV, the photoionization cross sections for the phenyl radical averaged over product channels were found ...
متن کاملExperimental Investigation of Reactive Absorption of Ammonia and Carbon Dioxide by Carbonated Ammonia Solution
In this work, reactive absorption of gases in aqueous electrolyte solutions has been investigated resulting in the development of a procedure in order to calculate the concentrations of ionic and molecular species in the liquid phase. Two duplicate experiments were conducted to investigate simultaneous reactive absorption of ammonia and carbon dioxide in partially carbonated ammonia solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 117 47 شماره
صفحات -
تاریخ انتشار 2013